首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Ultra-short-term Load Forecasting Based on Real-Time Response of Classified Flexible Loads
  • 本地全文:下载
  • 作者:Dunnan Liu ; Pengfei Li ; Xiaofeng Xu
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:165
  • 页码:1-4
  • DOI:10.1051/e3sconf/202016503048
  • 出版社:EDP Sciences
  • 摘要:Ultra-short-term load forecasting is an important basis for optimization and adjustment of power generation plans and dispatch plans. Based on the radial basis function neural network, the inert load is predicted, and the flexible load is predicted based on the price elasticity of electricity demand. Then, combined with the range of the flexible load, an ultra-short-term forecast interval for the total load is constructed. This paper studies the total load after considering the flexible load for demand response, and verifies the feasibility of the proposed method with an example.
国家哲学社会科学文献中心版权所有