首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors
  • 本地全文:下载
  • 作者:Scott W. Tyler ; Susan A. Burak ; James P. McNamara
  • 期刊名称:Journal of Glaciology
  • 印刷版ISSN:0022-1430
  • 电子版ISSN:1727-5652
  • 出版年度:2008
  • 卷号:54
  • 期号:187
  • 页码:673-679
  • DOI:10.3189/002214308786570827
  • 出版社:Cambridge University Press
  • 摘要:Snowpack base temperatures vary during accumulation and diurnally. Their measurement provides insight into physical, biological and chemical processes occurring at the snow/soil interface. Recent advances in Raman-spectra instruments, which use the scattered light in a standard telecommunications fiber-optic cable to infer absolute temperature along the entire length of the fiber, offer a unique opportunity to obtain basal snow temperatures at resolutions of 1 m, 10 s and 0.1°C. Measurements along a 330 m fiber over 24 hours during late-spring snowmelt at Mammoth Mountain, California, USA, showed basal snow temperatures of 0 ± 0.2°C using 10 s averages. Where the fiber-optic cable traversed bare ground, surface temperatures approached 40°C during midday. The durability of the fiber optic was excellent; no major damage or breaks occurred through the winter of burial. Data from the Dry Creek experimental watershed in Idaho across a small stream valley showed little variability of temperature on the northeast-facing, snow-covered slope, but clearly showed melting patterns and the effects of solar heating on southwest-facing slopes. These proof-of-concept experiments show that the technology enables more detailed spatial and temporal coverage than traditional point measurements of temperature.
国家哲学社会科学文献中心版权所有