摘要:We present a re-analysis of the results obtained from a series of measurements on freshwater and saline ice beams under various centrifugal accelerations. The data show a strong influence of beam size, brine volume and centrifugal acceleration on the elastic modulus of ice. The data suggest a transition brine volume at around 9%, which might occur close to the melting point, at which the elastic modulus of ice drops rapidly due to a possible change of brine-pocket structure. Furthermore, for brine volumes less than 9%, there is a negligible increase in the elastic modulus measured under high centrifugal acceleration, but for brine volumes more than 9% the increase is considerable, approaching that measured with freshwater ice. This may be due to necking of brine drainage channels just above the ice/water interface at high centrifugal acceleration. A model of sea ice was constructed based on existing theories of brine inclusions in sea ice, which satisfactorily predicts the observed trends.