首页    期刊浏览 2024年09月04日 星期三
登录注册

文章基本信息

  • 标题:Debris characteristics and ice-shelf dynamics in the ablation region of the McMurdo Ice Shelf, Antarctica
  • 本地全文:下载
  • 作者:Neil Glasser ; Becky Goodsell ; Luke Copland
  • 期刊名称:Journal of Glaciology
  • 印刷版ISSN:0022-1430
  • 电子版ISSN:1727-5652
  • 出版年度:2006
  • 卷号:52
  • 期号:177
  • 页码:223-234
  • DOI:10.3189/172756506781828692
  • 出版社:Cambridge University Press
  • 摘要:This paper presents observations and measurements of debris characteristics and ice-shelf dynamics in the ablation region of the McMurdo Ice Shelf in the Ross Sea sector of Antarctica. Ice-shelf surface processes and dynamics are inferred from a combination of sedimentological descriptions, ground-penetrating radar investigations and through ablation, velocity and ice-thickness measurements. Field data show that in the study area the ice shelf moves relatively slowly (1.5–18.3ma –1 ), has high ablation rates (43–441 mm during 2003/04 summer) and is thin (6–22 m). The majority of debris on the ice shelf was originally transported into the area by a large and dynamic ice-sheet/ice-shelf system at the Last Glacial Maximum. This debris is concentrated on the ice-shelf surface and is continually redistributed by surface ablation (creating an ice-cored landscape of large debris-rich mounds), ice-shelf flow (forming medial moraines) and meltwater streams (locally reworking material and redistributing it across the ice-shelf surface). A conceptual model for supraglacial debris transport by contemporary Antarctic ice shelves is presented, which emphasizes these links between debris supply, surface ablation and ice-shelf motion. Low-velocity ice shelves such as the McMurdo Ice Shelf can maintain and sequester a debris load for thousands of years, providing a mechanism by which ice shelves can accumulate sufficient debris to contribute to sediment deposition in the oceans.
国家哲学社会科学文献中心版权所有