摘要:Seasonal and interannual variations in surface elevation at the Greenland summit are modeled using a new temperature-dependent formulation of firn densification and are compared with elevations from European Remote-sensing Satellite (ERS-1/-2) radar altimetry. The rate constant and activation energy, usually set as constants in the Arrhenius-type relation, are strongly temperature-dependent, based on measurements of crystal-growth rates. A multiplicative factor in the densification rate accounts for differences between densification and grain-growth rates and is chosen to match the modeled and measured density profiles from 0 to 40 m. The stronger temperature dependence produces a significant seasonal cycle in the densification rate in the upper firn. Much of the densification and consequent surface lowering occur within 3 months in late spring/early summer, followed by a build-up from accumulation. Modeled elevation changes, using automatic weather station measurements of temperature and accumulation and modeled precipitation, agree well with observations. The respective seasonal amplitudes are 18 and 25 cm peak-to-peak with minima in mid-summer. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. Increased compaction driven by a summer warming trend decreases the modeled elevation (1992–99) by 20 cm, but accumulation increases in latter years dominate the overall 4.2 cm a −1 trend.