摘要:We use data from four automatic weather stations (AWSs) in Dronning Maud Land, East Antarctica, to study the surface mass balance and its components. Distinct differences were found between the moisture climates of the high plateau, the katabatic wind zone and the coastal ice shelves: significant undersaturation occurs year-round in the katabatic wind zone, while on the high plateau and on the coastal ice shelf the air is usually close to saturation. In summer, absorption of shortwave radiation at the snow surface enhances surface sublimation at all sites, removing 3-9% of the annual solid precipitation. Significant summer melting is an equally important ablation term near the coast, but vanishes inland. Vertically integrated column drifting-snow sublimation was estimated using two different methods. This process appears to be similar to or greater in magnitude than surface sublimation. Because intervals between significant precipitation events may last as long as several months, sublimation and melt cause extended periods of surface ablation in summer. In summer, all ablation processes together remove 15-56% of the solid precipitation, or 6-27% on an annual basis.