首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Modelling rapid online cultural transmission: evaluating neutral models on Twitter data with approximate Bayesian computation
  • 本地全文:下载
  • 作者:Simon Carrignon ; R. Alexander Bentley ; Damian Ruck
  • 期刊名称:Palgrave Communications
  • 电子版ISSN:2055-1045
  • 出版年度:2019
  • 卷号:5
  • 期号:1
  • 页码:1-9
  • DOI:10.1057/s41599-019-0295-9
  • 出版社:Palgrave Macmillan
  • 摘要:As social media technologies alter the variation, transmission and sorting of online information, short-term cultural evolution is transformed. In these media contexts, cultural evolution is an intra-generational process with much ‘horizontal’ transmission. As a pertinent case study, here we test variations of culture-evolutionary neutral models on recently-available Twitter data documenting the spread of true and false information. Using Approximate Bayesian Computation to resolve the full joint probability distribution of models with different social learning biases, emphasizing context versus content, we explore the dynamics of online information cascades: Are they driven by the intrinsic content of the message, or the extrinsic value (e.g., as a social badge) whose intrinsic value is arbitrary? Despite the obvious relevance of specific learning biases at the individual level, our tests at the online population scale indicate that unbiased learning model performs better at modelling information cascades whether true or false.
国家哲学社会科学文献中心版权所有