期刊名称:Proceedings of the International Association of Hydrological Sciences
印刷版ISSN:2199-8981
电子版ISSN:2199-899X
出版年度:2020
卷号:382
页码:225-229
DOI:10.5194/piahs-382-225-2020
摘要:Abstract. Monitoring of mining areas and associanted dam stability, has become increasingly important as the awareness of safety and environmental protection is rising. An appropriate monitoring scheme is necessitated to legally activate, reactivate, or terminate mining operations. The project Integrated Mining Impact Monitoring (i2Mon) aims to identify and analyze mining-induced impact, in particular its ground deformation. The monitoring system comprises terrestrial measurement and remote sensing: levelling, GPS, LiDAR scanning, UAV survey, and SAR interferometry. For interpretation and prediction, modelling will be used to simulate local displacements by different factors. The final goal is to launch an interactive GIS-based platform as an early warning and decision making system for mining industry. Currently, the project is proceeding from a preparatory phase. This paper focuses on spaceborne SAR interferometry, whereby we can cost-effectively monitor ground movement at millimeter level over a large area. We introduce the prototype of our InSAR monitoring system. The test result from Sentinel-1 images shows the surface movement during 2018 at a deactivating open-pit coal mine in Germany. We discuss the current status, ongoing works, planned test sites in Poland, and how we integrate data from different sensors and approaches.