期刊名称:Proceedings of the International Association of Hydrological Sciences
印刷版ISSN:2199-8981
电子版ISSN:2199-899X
出版年度:2020
卷号:382
页码:449-455
DOI:10.5194/piahs-382-449-2020
摘要:Abstract. The numerical prediction of land subsidence above producing reservoirs can be affected by a number of uncertainties, related for instance to the deep rock constitutive behavior, geomechanical properties, boundary and forcing conditions, etc. The quality and the amount of the available observations can help reduce such uncertainties by constraining the numerical model outcome and providing more reliable estimates of the unknown governing parameters. In this work, we address the numerical simulation of land subsidence above a producing hydrocarbon field in the Northern Adriatic, Italy, by integrating the available monitoring data in the computational model with the aid of Data Assimilation strategies. A preliminary model diagnostic analysis, i.e. the χ2-test, allows for identifying the most appropriate forecast ensemble. Then, a Bayesian approach, i.e. the Red Flag technique, and a smoother formulation, i.e. the Ensemble Smoother, provide a significant reduction of the prior uncertainties. The experiment developed on a real-world gas field confirms that the integration of monitoring observations with classical geomechanical models is a valuable approach to improve the reliability of land subsidence predictions and to exploit in a systematic way the increasing amount of available measurement records.