标题:Using Large Date to Present Uncertainty for Risk Prediction in the Era of Precision Medicine: The RESPECT Algorithm for Predicted Death at End-of-Life
期刊名称:International Journal of Population Data Science
电子版ISSN:2399-4908
出版年度:2018
卷号:3
期号:4
页码:1-1
DOI:10.23889/ijpds.v3i4.642
出版社:Swansea University
摘要:3655 days)) in the lowest risk group. Discrimination and calibration were satisfactory between the derivation (2007-2012 assessments) and validation (2013 assessments) cohorts, with a C statistics of 0.77 and discrimination plot intercept 0.094, slope 0.914. The Kaplan-Meier five-year survival curves for each of the 61 groups will be visually represented in six different ways displaying the risk and uncertainty, and can be altered to yield information of interest specific to each patient/caregiver. Conclusion/ImplicationsRESPECT is adaptive and personalized, with instantaneous feedback as the user provides a response to each question. We will present RESPECT’s development and implementation processes and set up an interactive presentation of the calculator, demonstrating RESPECT’s ability to deliver patient-comprehensible end-of-life prognoses with uncertainty to patients and their caregivers.