首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Placental extract protects bone marrow-derived stem/progenitor cells against radiation injury through anti-inflammatory activity
  • 本地全文:下载
  • 作者:M. Kawakatsu ; Y. Urata ; S. Goto
  • 期刊名称:Journal of Radiation Research
  • 印刷版ISSN:0449-3060
  • 电子版ISSN:1349-9157
  • 出版年度:2013
  • 卷号:54
  • 期号:2
  • 页码:268-276
  • DOI:10.1093/jrr/rrs105
  • 摘要:Placental extracts have been reported to have anti-oxidative and anti-inflammatory activities. Because there is increasing evidence that ionizing radiation induces the release of reactive oxygen species (ROS) and inflammatory cytokines, we examined the protective effects of a placental extract against radiation injury. C57BL/6 mice were exposed to 1 Gy of γ-ray radiation every day for 5 days, and placental extract (1 mg/day) was administrated orally soon after each exposure. At 2 days after the last irradiation, mice were euthanized to examine the numbers, colony-forming capacity, and DNA damage of stem/progenitor cells in the peripheral blood and bone marrow. To understand the related mechanisms, we also measured the levels of intracellular and mitochondrial ROS, and 8-OHdG in the plasma and urine, and IL-6 and TNF-α in the plasma. Compared with the placebo treatment, oral administration of placental extract significantly increased the number and colony-forming capacity, but decreased the DNA damage of bone marrow stem/progenitor cells. However, neither the levels of intracellular and mitochondrial ROS in bone marrow cells, nor the levels of 8-OHdG in the urine and plasma significantly differed between groups. Interestingly, in comparison with the placebo treatment, placental extract significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma. Placental extract significantly attenuated the acute radiation injury to bone marrow-derived stem/progenitor cells, and this protection is likely to be related to the anti-inflammatory activity of the placental extract.
  • 关键词:placental extract; radiation injury; bone marrow stem/progenitor cell; inflammatory; oxidative stress
国家哲学社会科学文献中心版权所有