首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Stable Isotope Characterization of the Ecohydrological Cycle at a Tropical Treeline Site
  • 其他标题:Stable Isotope Characterization of the Ecohydrological Cycle at a Tropical Treeline Site
  • 本地全文:下载
  • 作者:Peter Hartsough ; Simon R. Poulson ; Franco Biondi
  • 期刊名称:Arctic, Antarctic, and Alpine Research
  • 印刷版ISSN:1523-0430
  • 电子版ISSN:1938-4246
  • 出版年度:2008
  • 卷号:40
  • 期号:2
  • 页码:343-354
  • DOI:10.1657/1523-0430(06-117)[HARTSOUGH]2.0.CO;2
  • 摘要:We investigated the seasonal variation in pools of water available to mature trees growing at high elevation in a tropical environment. The study focused on the dominant tree species ( Pinus hartwegii ) at about 3800 m a.s.l. on Nevado de Colima, Mexico, where climate is typical of the North American Monsoon System. Stable isotope ratios of hydrogen and oxygen in water extracted from soil, xylem, and leaves were measured through a cycle of two dry and two wet seasons in 2003–2004. Isotopic ratios were also measured in accumulated precipitation, a few single precipitation events, and in spring water over the two-year period. Based on evidence from water, stable isotopes in soil, and xylem samples, trees utilized water from relatively shallow soil depths, which are representative of current conditions, rather than tapping groundwater, which is more representative of long-term trends. While the stable isotope signature in environmental waters showed a slightly different pattern before and during the monsoon, the more pronounced differences in leaf water isotopes between the two seasons, due to drought stress, will lead to a clear seasonal isotopic signal in tree ring cellulose. This study represents a unique snapshot of water cycling in a tropical treeline ecosystem, where our understanding of eco-hydrological pathways is limited. This type of analysis is also useful for proper calibration of stable isotopic signals in tree ring records.
国家哲学社会科学文献中心版权所有