首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Opinion Analysis for Emotional Classification on Emoji Tweets using the Naïve Bayes Algorithm
  • 本地全文:下载
  • 作者:Siti Sendari ; Ilham Ari Elbaith Zaeni ; Dian Candra Lestari
  • 期刊名称:Knowledge Engineering and Data Science
  • 印刷版ISSN:2597-4602
  • 电子版ISSN:2597-4637
  • 出版年度:2020
  • 卷号:3
  • 期号:1
  • 页码:50-59
  • DOI:10.17977/um018v3i12020p50-59
  • 出版社:Universitas Negeri Malang
  • 摘要:Opinion Analysis is a research study needed to social media, since the content could become a trending topic and has a significant impact on social life. One of the social media that have a big contribution to cyberspace and information development is Twitter. In the Twitter application, users can insert images that represent emotions, facial expressions, or icons. Emoji is a graphic symbol in the form of an image to express a thing, with the Emoji, a text can be read and understood according to its meaning because the image represents it. Of the several things that have been mentioned then, the researchers conducted research on the classification of tweet content based on the use of Emojis. This study aims to determine the emotional uses of Twitter in one period. Every tweet on the Twitter timeline, which contains both text and Emojis, will be classified according to several categories. The algorithm used was Naïve Bayes. It calculated the probability of Emoji tweet to obtain the text classification with Emojis. The results of the classification of emotions are grouped with three categories, namely "angry," "joy," and "sad," it showed that the category "joy" had become the emotional trend of Twitter users where Emojis (x1f60a) dominate the most. Meanwhile, the accuracy of the algorithm used to reach 90% with a 70:30 holdout technique.
  • 关键词:Opinion Analysis Twitter Emoji Classification Naïve Bayes
国家哲学社会科学文献中心版权所有