首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Triple-goal estimation of unemployment rates for U.S. states using the U.S. Current Population Survey data
  • 本地全文:下载
  • 作者:Daniel Bonnéry ; Yang Cheng ; Neung Soo Ha
  • 期刊名称:Statistics in Transition
  • 印刷版ISSN:1234-7655
  • 电子版ISSN:2450-0291
  • 出版年度:2015
  • 卷号:16
  • 期号:4
  • 页码:511-522
  • DOI:10.21307/stattrans-2015-030
  • 出版社:Exeley Inc.
  • 摘要:In this paper, we first develop a triple-goal small area estimation methodology for simultaneous estimation of unemployment rates for U.S. states using the Current Population Survey (CPS) data and a two-level random sampling variance normal model. The main goal of this paper is to illustrate the utility of the triple-goal methodology in generating a single series of unemployment rate estimates for three separate purposes: developing estimates for individual small area means, producing empirical distribution function (EDF) of true small area means, and the ranking of the small areas by true small area means. We achieve our goal using a Monte Carlo simulation experiment and a real data analysis.
  • 关键词:complex survey data;empirical distribution function;Monte Carlo Markov Chain;rank;risk;small area estimation;
国家哲学社会科学文献中心版权所有