首页    期刊浏览 2025年07月17日 星期四
登录注册

文章基本信息

  • 标题:VARIABLE SELECTION IN MULTIVARIATE FUNCTIONAL DATA CLASSIFICATION
  • 本地全文:下载
  • 作者:Tomasz Górecki ; Mirosław Krzyśko ; Waldemar Wołyński
  • 期刊名称:Statistics in Transition
  • 印刷版ISSN:1234-7655
  • 电子版ISSN:2450-0291
  • 出版年度:2019
  • 卷号:20
  • 期号:2
  • 页码:123-138
  • DOI:10.21307/stattrans-2019-018
  • 出版社:Exeley Inc.
  • 摘要:A new variable selection method is considered in the setting of classification with multivariate functional data (Ramsay and Silverman (2005)). The variable selection is a dimensionality reduction method which leads to replace the whole vector process, with a low-dimensional vector still giving a comparable classification error. Various classifiers appropriate for functional data are used. The proposed variable selection method is based on functional distance covariance (dCov) given by Székely and Rizzo (2009, 2012) and the Hilbert-Schmidt Independent Criterion (HSIC) given by Gretton et al. (2005). This method is a modification of the procedure given by Kong et al. (2015). The proposed methodology is illustrated with a real data example.
  • 关键词:multivariate functional data; variable selection; dCov; HSIC; classification
国家哲学社会科学文献中心版权所有