首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A NEW RATIO ESTIMATOR: AN ALTERNATIVE TO REGRESSION ESTIMATOR IN SURVEY SAMPLING USING AUXILIARY INFORMATION
  • 本地全文:下载
  • 作者:Mir Subzar ; S. Maqbool ; T. A. Raja
  • 期刊名称:Statistics in Transition
  • 印刷版ISSN:1234-7655
  • 电子版ISSN:2450-0291
  • 出版年度:2019
  • 卷号:20
  • 期号:4
  • 页码:181-189
  • DOI:10.21307/stattrans-2019-041
  • 出版社:Exeley Inc.
  • 摘要:The most dominant problem in the survey sampling is to obtain the better ratio estimators for the estimation of population mean or population variance. Estimation theory is enhanced by using the auxiliary information in order to improve on designs, precision and efficiency of estimators. A modified class of ratio estimator is suggested in this paper to estimate the population mean. Expressions for the bias and the mean square error of the proposed estimators are obtained. Both analytical and numerical comparison has shown the suggested estimator to be more efficient than some existing ones. The bias of the suggested estimator is also found to be negligible for the population under consideration, indicating that the estimator is as good the regression estimator and better than the other estimators under consideration.
  • 关键词:ratio type estimators; auxiliary information; bias; mean square error; simple random sampling; efficiency
国家哲学社会科学文献中心版权所有