首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Undersampling Instance Selection for Hybrid and Incomplete Imbalanced Data
  • 本地全文:下载
  • 作者:Oscar Camacho-Nieto ; Cornelio Yáñez-Marquez ; Yenny Villuendas-Rey
  • 期刊名称:Journal of Universal Computer Science
  • 印刷版ISSN:0948-6968
  • 出版年度:2020
  • 卷号:26
  • 期号:6
  • 页码:698-719
  • 出版社:Graz University of Technology and Know-Center
  • 摘要:This paper proposes a novel undersampling method, for dealing with imbalanced datasets. The proposal is based on a novel instance importance measure (also introduced in this paper), and is able to balance hybrid and incomplete data. The numerical experiments carried out show the proposed undersampling algorithm outperforms others algorithms of the state of art, in well-known imbalanced datasets.
  • 关键词:hybrid and incomplete data; imbalanced data; undersampling
国家哲学社会科学文献中心版权所有