首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Boundary Effect on Asymptotic Behavior of Solutions to the p -System with Time-Dependent Damping
  • 本地全文:下载
  • 作者:Ran Duan ; Mina Jiang ; Yinghui Zhang
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-17
  • DOI:10.1155/2020/3060867
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    In this paper, we consider the asymptotic behavior of solutions to the p -system with time-dependent damping on the half-line R + = 0 , + ∞ , v t − u x = 0 , u t + p v x = − α / 1 + t λ u with the Dirichlet boundary condition u x = 0 = 0 , in particular, including the constant and nonconstant coefficient damping. The initial data v 0 , u 0 x have the constant state v + , u + at x = + ∞ . We prove that the solutions time-asymptotically converge to v + , 0 as t tends to infinity. Compared with previous results about the p -system with constant coefficient damping, we obtain a general result when the initial perturbation belongs to H 3 R + × H 2 R + . Our proof is based on the time-weighted energy method.

国家哲学社会科学文献中心版权所有