首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Cross-Modal Search for Social Networks via Adversarial Learning
  • 本地全文:下载
  • 作者:Nan Zhou ; Junping Du ; Zhe Xue
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-12
  • DOI:10.1155/2020/7834953
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Cross-modal search has become a research hotspot in the recent years. In contrast to traditional cross-modal search, social network cross-modal information search is restricted by data quality for arbitrary text and low-resolution visual features. In addition, the semantic sparseness of cross-modal data from social networks results in the text and visual modalities misleading each other. In this paper, we propose a cross-modal search method for social network data that capitalizes on adversarial learning (cross-modal search with adversarial learning: CMSAL). We adopt self-attention-based neural networks to generate modality-oriented representations for further intermodal correlation learning. A search module is implemented based on adversarial learning, through which the discriminator is designed to measure the distribution of generated features from intramodal and intramodal perspectives. Experiments on real-word datasets from Sina Weibo and Wikipedia, which have similar properties to social networks, show that the proposed method outperforms the state-of-the-art cross-modal search methods.

国家哲学社会科学文献中心版权所有