In this paper, we study the finite-time singularity formation on the coupled Burgers–Constantin–Lax–Majda system with the nonlocal term, which is one nonlinear nonlocal system of combining Burgers equations with Constantin–Lax–Majda equations. We discuss whether the finite-time blow-up singularity mechanism of the system depends upon the domination between the CLM type’s vortex-stretching term and the Burgers type’s convection term in some sense. We give two kinds of different finite-time blow-up results and prove the local smooth solution of the nonlocal system blows up in finite time for two classes of large initial data.