首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:Nonparametric relative recursive regression
  • 本地全文:下载
  • 作者:Yousri Slaoui ; Salah Khardani
  • 期刊名称:Dependence Modeling
  • 电子版ISSN:2300-2298
  • 出版年度:2020
  • 卷号:8
  • 期号:1
  • 页码:221-238
  • DOI:10.1515/demo-2020-0013
  • 出版社:Walter de Gruyter GmbH
  • 摘要:In this paper, we propose the problem of estimating a regression function recursively based on the minimization of the Mean Squared Relative Error ( MSRE ), where outlier data are present and the response variable of the model is positive. We construct an alternative estimation of the regression function using a stochastic approximation method. The Bias, variance, and Mean Integrated Squared Error ( MISE ) are computed explicitly. The asymptotic normality of the proposed estimator is also proved. Moreover, we conduct a simulation to compare the performance of our proposed estimators with that of the two classical kernel regression estimators and then through a real Malaria dataset.
  • 关键词:nonparametric regression ; stochastic approximation algorithm ; smoothing ; curve fitting ; relative regression ; 62G08 ; 62L20 ; 65D10
国家哲学社会科学文献中心版权所有