首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A metasurface-based diamond frequency converter using plasmonic nanogap resonators
  • 本地全文:下载
  • 作者:Qixin Shen ; Amirhassan Shams-Ansari ; Andrew M. Boyce
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2020
  • 卷号:-1
  • 期号:ahead-of-print
  • DOI:10.1515/nanoph-2020-0392
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Diamond has attracted great interest as an appealing material for various applications ranging from classical to quantum optics. To date, Raman lasers, single photon sources, quantum sensing and quantum communication have been demonstrated with integrated diamond devices. However, studies of the nonlinear optical properties of diamond have been limited, especially at the nanoscale. Here, a metasurface consisting of plasmonic nanogap cavities is used to enhance both χ (2) and χ (3) nonlinear optical processes in a wedge-shaped diamond slab with a thickness down to 12 nm. Multiple nonlinear processes were enhanced simultaneously due to the relaxation of phase-matching conditions in subwavelength plasmonic structures by matching two excitation wavelengths with the fundamental and second-order modes of the nanogap cavities. Specifically, third-harmonic generation (THG) and second-harmonic generation (SHG) are both enhanced 1.6 × 107-fold, while four-wave mixing is enhanced 3.0 × 105-fold compared to diamond without the metasurface. Even though diamond lacks a bulk χ (2) due to centrosymmetry, the observed SHG arises from the surface χ (2) of the diamond slab and is enhanced by the metasurface elements. The efficient, deeply subwavelength diamond frequency converter demonstrated in this work suggests an approach for conversion of color center emission to telecom wavelengths directly in diamond.
  • 关键词:diamond ; frequency conversion ; nanogap cavity ; nonlinear generation ; plasmonics
国家哲学社会科学文献中心版权所有