首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Ensemble Learning with Multiclassifiers on Pediatric Hand Radiograph Segmentation for Bone Age Assessment
  • 本地全文:下载
  • 作者:Rui Liu ; Yuanyuan Jia ; Xiangqian He
  • 期刊名称:International Journal of Biomedical Imaging
  • 印刷版ISSN:1687-4188
  • 电子版ISSN:1687-4196
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-12
  • DOI:10.1155/2020/8866700
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.

国家哲学社会科学文献中心版权所有