期刊名称:Computational and Structural Biotechnology Journal
印刷版ISSN:2001-0370
出版年度:2020
卷号:18
页码:1947-1955
DOI:10.1016/j.csbj.2020.07.006
出版社:Computational and Structural Biotechnology Journal
摘要:Chemosensory pathways represent a major prokaryotic signal transduction mechanism that is based on signal sensing by chemoreceptors. An essential feature of chemosensory pathways is the CheR and CheB mediated control of chemoreceptor methylation causing pathway adaptation. At their C-terminal extension the Tar and Tsr model chemoreceptors contain a pentapeptide that acts as an additional CheR and CheB binding site. The relevance of this pentapeptide is poorly understood since pentapeptide removal from Tar/Tsr causes receptor inactivation, whereas many other chemoreceptors do not require this pentapeptide for correct function. We report here a bioinformatic analysis of pentapeptide containing chemoreceptors. These receptors were detected in 11 bacterial phyla and represent approximately 10% of all chemoreceptors. Pentapeptide containing chemoreceptors are mainly found in Gram-negative bacteria, are of low abundance in Gram-positive species and almost absent from archaea. Almost 50% of TarH ( Tar h omologue) ligand binding domain containing chemoreceptors possess pentapeptides, whereas chemoreceptor families with other ligand binding domains are devoid of pentapeptides. The abundance of chemoreceptors with C-terminal pentapeptides correlated negatively with the number of chemoreceptor genes per genome. The consensus sequence reveals a negative net charge for many pentapeptides. Pentapeptide containing chemoreceptors are very abundant in the order Enterobacterales, particularly in the families Pectobacterium and Dickeya, where they represent about 50% of the total number. In contrast, bacteria with primarily free living lifestyles have a reduced number of pentapeptides, such as approximately 1% for Pseudomonadales. It is proposed that pentapeptide function is related to mechanisms that permit host interaction.