首页    期刊浏览 2025年07月17日 星期四
登录注册

文章基本信息

  • 标题:Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
  • 本地全文:下载
  • 作者:Alejandro Urieles ; William Ramírez ; María José Ortega
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13662-020-02988-0
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.
  • 关键词:Generalized Apostol Frobenius–Euler polynomials ; Hurwitz zeta function ; Fourier expansion ; Generalized Apostol Frobennius–Euler numbers
国家哲学社会科学文献中心版权所有