首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:The GaussianSketch for Almost Relative Error Kernel Distance
  • 本地全文:下载
  • 作者:Jeff M. Phillips ; Wai Ming Tai
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:176
  • 页码:12:1-12:20
  • DOI:10.4230/LIPIcs.APPROX/RANDOM.2020.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce two versions of a new sketch for approximately embedding the Gaussian kernel into Euclidean inner product space. These work by truncating infinite expansions of the Gaussian kernel, and carefully invoking the RecursiveTensorSketch [Ahle et al. SODA 2020]. After providing concentration and approximation properties of these sketches, we use them to approximate the kernel distance between points sets. These sketches yield almost (1+ε)-relative error, but with a small additive α term. In the first variants the dependence on 1/α is poly-logarithmic, but has higher degree of polynomial dependence on the original dimension d. In the second variant, the dependence on 1/α is still poly-logarithmic, but the dependence on d is linear.
  • 关键词:Kernel Distance; Kernel Density Estimation; Sketching
国家哲学社会科学文献中心版权所有