首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Vector-Matrix-Vector Queries for Solving Linear Algebra, Statistics, and Graph Problems
  • 本地全文:下载
  • 作者:Cyrus Rashtchian ; David P. Woodruff ; Hanlin Zhu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:176
  • 页码:26:1-26:20
  • DOI:10.4230/LIPIcs.APPROX/RANDOM.2020.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the general problem of learning about a matrix through vector-matrix-vector queries. These queries provide the value of u^{T}Mv over a fixed field ð"½ for a specified pair of vectors u,v â^^ ð"½â¿. To motivate these queries, we observe that they generalize many previously studied models, such as independent set queries, cut queries, and standard graph queries. They also specialize the recently studied matrix-vector query model. Our work is exploratory and broad, and we provide new upper and lower bounds for a wide variety of problems, spanning linear algebra, statistics, and graphs. Many of our results are nearly tight, and we use diverse techniques from linear algebra, randomized algorithms, and communication complexity.
  • 关键词:Query complexity; property testing; vector-matrix-vector; linear algebra; statistics; graph parameter estimation
国家哲学社会科学文献中心版权所有