首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Learning Lines with Ordinal Constraints
  • 本地全文:下载
  • 作者:Bohan Fan ; Diego Ihara ; Neshat Mohammadi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:176
  • 页码:45:1-45:15
  • DOI:10.4230/LIPIcs.APPROX/RANDOM.2020.45
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of finding a mapping f from a set of points into the real line, under ordinal triple constraints. An ordinal constraint for a triple of points (u,v,w) asserts that f(u)-f(v) < f(u)-f(w) . We present an approximation algorithm for the dense case of this problem. Given an instance that admits a solution that satisfies (1-ε)-fraction of all constraints, our algorithm computes a solution that satisfies (1-O(ε^{1/8}))-fraction of all constraints, in time O(n⁷) + (1/ε)^{O(1/ε^{1/8})} n.
  • 关键词:metric learning; embedding into the line; ordinal constraints; approximation algorithms
国家哲学社会科学文献中心版权所有