首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Improved Multi-Pass Streaming Algorithms for Submodular Maximization with Matroid Constraints
  • 本地全文:下载
  • 作者:Chien-Chung Huang ; Theophile Thiery ; Justin Ward
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:176
  • 页码:62:1-62:19
  • DOI:10.4230/LIPIcs.APPROX/RANDOM.2020.62
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We give improved multi-pass streaming algorithms for the problem of maximizing a monotone or arbitrary non-negative submodular function subject to a general p-matchoid constraint in the model in which elements of the ground set arrive one at a time in a stream. The family of constraints we consider generalizes both the intersection of p arbitrary matroid constraints and p-uniform hypergraph matching. For monotone submodular functions, our algorithm attains a guarantee of p+1+ε using O(p/ε)-passes and requires storing only O(k) elements, where k is the maximum size of feasible solution. This immediately gives an O(1/ε)-pass (2+ε)-approximation for monotone submodular maximization in a matroid and (3+ε)-approximation for monotone submodular matching. Our algorithm is oblivious to the choice ε and can be stopped after any number of passes, delivering the appropriate guarantee. We extend our techniques to obtain the first multi-pass streaming algorithms for general, non-negative submodular functions subject to a p-matchoid constraint. We show that a randomized O(p/ε)-pass algorithm storing O(p³klog(k)/ε³) elements gives a (p+1+γ+O(ε))-approximation, where γ is the guarantee of the best-known offline algorithm for the same problem.
  • 关键词:submodular maximization; streaming algorithms; matroid; matchoid
国家哲学社会科学文献中心版权所有