首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Approximate CVP_p in Time 2^{0.802 n}
  • 本地全文:下载
  • 作者:Friedrich Eisenbrand ; Moritz Venzin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:173
  • 页码:43:1-43:15
  • DOI:10.4230/LIPIcs.ESA.2020.43
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that a constant factor approximation of the shortest and closest lattice vector problem w.r.t. any ð"_p-norm can be computed in time 2^{(0.802 +ε) n}. This matches the currently fastest constant factor approximation algorithm for the shortest vector problem w.r.t. ð"â,,. To obtain our result, we combine the latter algorithm w.r.t. ð"â,, with geometric insights related to coverings.
  • 关键词:Shortest and closest vector problem; approximation algorithm; sieving; covering convex bodies
国家哲学社会科学文献中心版权所有