首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Monte Carlo Tree Search Guided by Symbolic Advice for MDPs
  • 本地全文:下载
  • 作者:Damien Busatto-Gaston ; Debraj Chakraborty ; Jean-Francois Raskin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:171
  • 页码:40:1-40:24
  • DOI:10.4230/LIPIcs.CONCUR.2020.40
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we consider the online computation of a strategy that aims at optimizing the expected average reward in a Markov decision process. The strategy is computed with a receding horizon and using Monte Carlo tree search (MCTS). We augment the MCTS algorithm with the notion of symbolic advice, and show that its classical theoretical guarantees are maintained. Symbolic advice are used to bias the selection and simulation strategies of MCTS. We describe how to use QBF and SAT solvers to implement symbolic advice in an efficient way. We illustrate our new algorithm using the popular game Pac-Man and show that the performances of our algorithm exceed those of plain MCTS as well as the performances of human players.
  • 关键词:Markov decision process; Monte Carlo tree search; symbolic advice; simulation
国家哲学社会科学文献中心版权所有