首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Polynomial Kernel for 3-Leaf Power Deletion
  • 本地全文:下载
  • 作者:Jungho Ahn ; Eduard Eiben ; O-joung Kwon
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:170
  • 页码:5:1-5:14
  • DOI:10.4230/LIPIcs.MFCS.2020.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:For a non-negative integer ð", a graph G is an ð"-leaf power of a tree T if V(G) is equal to the set of leaves of T, and distinct vertices v and w of G are adjacent if and only if the distance between v and w in T is at most ð". Given a graph G, 3-Leaf Power Deletion asks whether there is a set S âS† V(G) of size at most k such that G\S is a 3-leaf power of some treeT. We provide a polynomial kernel for this problem. More specifically, we present a polynomial-time algorithm for an input instance (G,k) to output an equivalent instance (G',k') such that k'≤ k and G' has at most O(k^14) vertices.
  • 关键词:ð"-leaf power; parameterized algorithms; kernelization
国家哲学社会科学文献中心版权所有