首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Efficient Enumerations for Minimal Multicuts and Multiway Cuts
  • 本地全文:下载
  • 作者:Kazuhiro Kurita ; Yasuaki Kobayashi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:170
  • 页码:60:1-60:14
  • DOI:10.4230/LIPIcs.MFCS.2020.60
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let G = (V, E) be an undirected graph and let B âS† V Ã- V be a set of terminal pairs. A node/edge multicut is a subset of vertices/edges of G whose removal destroys all the paths between every terminal pair in B. The problem of computing a minimum node/edge multicut is NP-hard and extensively studied from several viewpoints. In this paper, we study the problem of enumerating all minimal node multicuts. We give an incremental polynomial delay enumeration algorithm for minimal node multicuts, which extends an enumeration algorithm due to Khachiyan et al. (Algorithmica, 2008) for minimal edge multicuts. Important special cases of node/edge multicuts are node/edge multiway cuts, where the set of terminal pairs contains every pair of vertices in some subset T âS† V, that is, B = T Ã- T. We improve the running time bound for this special case: We devise a polynomial delay and exponential space enumeration algorithm for minimal node multiway cuts and a polynomial delay and space enumeration algorithm for minimal edge multiway cuts.
  • 关键词:Multicuts; Multiway cuts; Enumeration algorithms
国家哲学社会科学文献中心版权所有