首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Approximability of the Eight-Vertex Model
  • 本地全文:下载
  • 作者:Jin-Yi Cai ; Tianyu Liu ; Pinyan Lu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:169
  • 页码:4:1-4:18
  • DOI:10.4230/LIPIcs.CCC.2020.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We initiate a study of the classification of approximation complexity of the eight-vertex model defined over 4-regular graphs. The eight-vertex model, together with its special case the six-vertex model, is one of the most extensively studied models in statistical physics, and can be stated as a problem of counting weighted orientations in graph theory. Our result concerns the approximability of the partition function on all 4-regular graphs, classified according to the parameters of the model. Our complexity results conform to the phase transition phenomenon from physics. We introduce a quantum decomposition of the eight-vertex model and prove a set of closure properties in various regions of the parameter space. Furthermore, we show that there are extra closure properties on 4-regular planar graphs. These regions of the parameter space are concordant with the phase transition threshold. Using these closure properties, we derive polynomial time approximation algorithms via Markov chain Monte Carlo. We also show that the eight-vertex model is NP-hard to approximate on the other side of the phase transition threshold.
  • 关键词:Approximate complexity; the eight-vertex model; Markov chain Monte Carlo
国家哲学社会科学文献中心版权所有