摘要:The fundamental Minimum Circuit Size Problem is a well-known example of a problem that is neither known to be in ð-¯ nor known to be NP-hard. Kabanets and Cai [Kabanets and Cai, 2000] showed that if MCSP is NP-hard under "natural" m-reductions, superpolynomial circuit lower bounds for exponential time would follow. This has triggered a long line of work on understanding the power of reductions to MCSP. Nothing was known so far about consequences of NP-hardness of MCSP under general Turing reductions. In this work, we consider two structured kinds of Turing reductions: parametric honest reductions and natural reductions. The latter generalize the natural reductions of Kabanets and Cai to the case of Turing-reductions. We show that NP-hardness of MCSP under these kinds of Turing-reductions imply superpolynomial circuit lower bounds for exponential time.