首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Sum of Squares Bounds for the Ordering Principle
  • 本地全文:下载
  • 作者:Aaron Potechin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:169
  • 页码:38:1-38:37
  • DOI:10.4230/LIPIcs.CCC.2020.38
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we analyze the sum of squares hierarchy (SOS) on the ordering principle on n elements (which has N = Î~(n²) variables). We prove that degree O(â^Snlog(n)) SOS can prove the ordering principle. We then show that this upper bound is essentially tight by proving that for any ε > 0, SOS requires degree Ω(n^(1/2 - ε)) to prove the ordering principle.
  • 关键词:sum of squares hierarchy; proof complexity; ordering principle
国家哲学社会科学文献中心版权所有