首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Scheduling Lower Bounds via AND Subset Sum
  • 本地全文:下载
  • 作者:Amir Abboud ; Karl Bringmann ; Danny Hermelin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:4:1-4:15
  • DOI:10.4230/LIPIcs.ICALP.2020.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given N instances (X_1,t_1),…,(X_N,t_N) of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers X_i has a subset that sums up to the target integer t_i. We prove that this problem cannot be solved in time OÌf((N â<. t_max)^{1-ε}), for t_max = max_i t_i and any ε > 0, assuming the â^€ â^f Strong Exponential Time Hypothesis (â^€â^f-SETH). We then use this result to exclude OÌf(n+P_maxâ<.n^{1-ε})-time algorithms for several scheduling problems on n jobs with maximum processing time P_max, assuming â^€â^f-SETH. These include classical problems such as 1 â^' w_jU_j, the problem of minimizing the total weight of tardy jobs on a single machine, and Pâ,, â^' U_j, the problem of minimizing the number of tardy jobs on two identical parallel machines.
  • 关键词:SETH; fine grained complexity; Subset Sum; scheduling
国家哲学社会科学文献中心版权所有