首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Asynchronous Majority Dynamics in Preferential Attachment Trees
  • 本地全文:下载
  • 作者:Maryam Bahrani ; Nicole Immorlica ; Divyarthi Mohan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:8:1-8:14
  • DOI:10.4230/LIPIcs.ICALP.2020.8
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study information aggregation in networks where agents make binary decisions (labeled incorrect or correct). Agents initially form independent private beliefs about the better decision, which is correct with probability 1/2+δ. The dynamics we consider are asynchronous (each round, a single agent updates their announced decision) and non-Bayesian (agents simply copy the majority announcements among their neighbors, tie-breaking in favor of their private signal). Our main result proves that when the network is a tree formed according to the preferential attachment model [Barabási and Albert, 1999], with high probability, the process stabilizes in a correct majority within O(n log n/log log n) rounds. We extend our results to other tree structures, including balanced M-ary trees for any M.
  • 关键词:Opinion Dynamics; Information Cascades; Preferential Attachment; Majority Dynamics; non-Bayesian Asynchronous Learning; Stochastic Processes
国家哲学社会科学文献中心版权所有