文章基本信息
- 标题:From Holant to Quantum Entanglement and Back
- 本地全文:下载
- 作者:Jin-Yi Cai ; Zhiguo Fu ; Shuai Shao 等
- 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
- 电子版ISSN:1868-8969
- 出版年度:2020
- 卷号:168
- 页码:22:1-22:16
- DOI:10.4230/LIPIcs.ICALP.2020.22
- 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
- 摘要:Holant problems are intimately connected with quantum theory as tensor networks. We first use techniques from Holant theory to derive new and improved results for quantum entanglement theory. We discover two particular entangled states Ψâ,âY© of 6 qubits and Ψâ,^âY© of 8 qubits respectively, that have extraordinary closure properties in terms of the Bell property. Then we use entanglement properties of constraint functions to derive a new complexity dichotomy for all real-valued Holant problems containing a signature of odd arity. The signatures need not be symmetric, and no auxiliary signatures are assumed.
- 关键词:Holant problem; Quantum entanglement; SLOCC equivalence; Bell property