首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Symmetric Arithmetic Circuits
  • 本地全文:下载
  • 作者:Anuj Dawar ; Gregory Wilsenach
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:36:1-36:18
  • DOI:10.4230/LIPIcs.ICALP.2020.36
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce symmetric arithmetic circuits, i.e. arithmetic circuits with a natural symmetry restriction. In the context of circuits computing polynomials defined on a matrix of variables, such as the determinant or the permanent, the restriction amounts to requiring that the shape of the circuit is invariant under row and column permutations of the matrix. We establish unconditional, nearly exponential, lower bounds on the size of any symmetric circuit for computing the permanent over any field of characteristic other than 2. In contrast, we show that there are polynomial-size symmetric circuits for computing the determinant over fields of characteristic zero.
  • 关键词:arithmetic circuits; symmetric arithmetic circuits; Boolean circuits; symmetric circuits; permanent; determinant; counting width; Weisfeiler-Leman dimension; Cai-Fürer-Immerman constructions
国家哲学社会科学文献中心版权所有