首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Tree Polymatrix Games Are PPAD-Hard
  • 本地全文:下载
  • 作者:Argyrios Deligkas ; John Fearnley ; Rahul Savani
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:38:1-38:14
  • DOI:10.4230/LIPIcs.ICALP.2020.38
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We prove that it is PPAD-hard to compute a Nash equilibrium in a tree polymatrix game with twenty actions per player. This is the first PPAD hardness result for a game with a constant number of actions per player where the interaction graph is acyclic. Along the way we show PPAD-hardness for finding an ε-fixed point of a 2D-LinearFIXP instance, when ε is any constant less than (â^S2 - 1)/2 â‰^ 0.2071. This lifts the hardness regime from polynomially small approximations in k-dimensions to constant approximations in two-dimensions, and our constant is substantial when compared to the trivial upper bound of 0.5.
  • 关键词:Nash Equilibria; Polymatrix Games; PPAD; Brouwer Fixed Points
国家哲学社会科学文献中心版权所有