首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:From Linear to Additive Cellular Automata
  • 本地全文:下载
  • 作者:Alberto Dennunzio ; Enrico Formenti ; Darij Grinberg
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:125:1-125:13
  • DOI:10.4230/LIPIcs.ICALP.2020.125
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper proves the decidability of several important properties of additive cellular automata over finite abelian groups. First of all, we prove that equicontinuity and sensitivity to initial conditions are decidable for a nontrivial subclass of additive cellular automata, namely, the linear cellular automata over ð.,ⁿ, where ð., is the ring â"¤/mâ"¤. The proof of this last result has required to prove a general result on the powers of matrices over a commutative ring which is of interest in its own. Then, we extend the decidability result concerning sensitivity and equicontinuity to the whole class of additive cellular automata over a finite abelian group and for such a class we also prove the decidability of topological transitivity and all the properties (as, for instance, ergodicity) that are equivalent to it. Finally, a decidable characterization of injectivity and surjectivity for additive cellular automata over a finite abelian group is provided in terms of injectivity and surjectivity of an associated linear cellular automata over ð.,ⁿ.
  • 关键词:Cellular Automata; Decidability; Symbolic Dynamics
国家哲学社会科学文献中心版权所有