摘要:Similarity relations are reflexive, symmetric, and transitive fuzzy relations. They help to make approximate inferences, replacing the notion of equality. Similarity-based unification has been quite intensively investigated, as a core computational method for approximate reasoning and declarative programming. In this paper we consider solving constraints over several similarity relations, instead of a single one. Multiple similarities pose challenges to constraint solving, since we can not rely on the transitivity property anymore. Existing methods for unification with fuzzy proximity relations (reflexive, symmetric, non-transitive relations) do not provide a solution that would adequately reflect particularities of dealing with multiple similarities. To address this problem, we develop a constraint solving algorithm for multiple similarity relations, prove its termination, soundness, and completeness properties, and discuss applications.