首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons
  • 本地全文:下载
  • 作者:Eyal Ackerman ; Bal{'a}zs Keszegh ; G{"u}nter Rote
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:1:1-1:18
  • DOI:10.4230/LIPIcs.SoCG.2020.1
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:What is the maximum number of intersections of the boundaries of a simple m-gon and a simple n-gon, assuming general position? This is a basic question in combinatorial geometry, and the answer is easy if at least one of m and n is even. If both m and n are odd, the best known construction has mn-(m+n)+3 intersections, and it is conjectured that this is the maximum. However, the best known upper bound is only mn-(m + âO^ n/6 âO‰), for m ≥ n. We prove a new upper bound of mn-(m+n)+C for some constant C, which is optimal apart from the value of C.
  • 关键词:Simple polygon; Ramsey theory; combinatorial geometry
国家哲学社会科学文献中心版权所有