首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Dimensionality Reduction for k-Distance Applied to Persistent Homology
  • 本地全文:下载
  • 作者:Shreya Arya ; Jean-Daniel Boissonnat ; Kunal Dutta
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:10:1-10:15
  • DOI:10.4230/LIPIcs.SoCG.2020.10
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set P of n points and a constant k, we are interested in computing the persistent homology of the ÄOech filtration of P for the k-distance, and investigate the effectiveness of dimensionality reduction for this problem, answering an open question of Sheehy [Proc. SoCG, 2014]. We show that any linear transformation that preserves pairwise distances up to a (1±ε) multiplicative factor, must preserve the persistent homology of the ÄOech filtration up to a factor of (1-ε)^{-1}. Our results also show that the Vietoris-Rips and Delaunay filtrations for the k-distance, as well as the ÄOech filtration for the approximate k-distance of Buchet et al. are preserved up to a (1±ε) factor. We also prove extensions of our main theorem, for point sets (i) lying in a region of bounded Gaussian width or (ii) on a low-dimensional manifold, obtaining the target dimension bounds of Lotz [Proc. Roy. Soc. , 2019] and Clarkson [Proc. SoCG, 2008 ] respectively.
  • 关键词:Dimensionality reduction; Johnson-Lindenstrauss lemma; Topological Data Analysis; Persistent Homology; k-distance; distance to measure
国家哲学社会科学文献中心版权所有