首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Removing Connected Obstacles in the Plane Is FPT
  • 本地全文:下载
  • 作者:Eduard Eiben ; Daniel Lokshtanov
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:39:1-39:14
  • DOI:10.4230/LIPIcs.SoCG.2020.39
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given two points in the plane, a set of obstacles defined by closed curves, and an integer k, does there exist a path between the two designated points intersecting at most k of the obstacles? This is a fundamental and well-studied problem arising naturally in computational geometry, graph theory, wireless computing, and motion planning. It remains NP-hard even when the obstacles are very simple geometric shapes (e.g., unit-length line segments). In this paper, we show that the problem is fixed-parameter tractable (FPT) parameterized by k, by giving an algorithm with running time k^O(k³) n^O(1). Here n is the number connected areas in the plane drawing of all the obstacles.
  • 关键词:parameterized complexity and algorithms; planar graphs; motion planning; barrier coverage; barrier resilience; colored path; minimum constraint removal
国家哲学社会科学文献中心版权所有