首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs
  • 本地全文:下载
  • 作者:Fedor V. Fomin ; Daniel Lokshtanov ; Fahad Panolan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:44:1-44:18
  • DOI:10.4230/LIPIcs.SoCG.2020.44
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present an algorithm for the extensively studied Long Path and Long Cycle problems on unit disk graphs that runs in time 2^{ð'ª(â^Sk)}(n+m). Under the Exponential Time Hypothesis, Long Path and Long Cycle on unit disk graphs cannot be solved in time 2^{o(â^Sk)}(n+m)^ð'ª(1) [de Berg et al., STOC 2018], hence our algorithm is optimal. Besides the 2^{ð'ª(â^Sk)}(n+m)^ð'ª(1)-time algorithm for the (arguably) much simpler Vertex Cover problem by de Berg et al. [STOC 2018] (which easily follows from the existence of a 2k-vertex kernel for the problem), this is the only known ETH-optimal fixed-parameter tractable algorithm on UDGs. Previously, Long Path and Long Cycle on unit disk graphs were only known to be solvable in time 2^{ð'ª(â^Sklog k)}(n+m). This algorithm involved the introduction of a new type of a tree decomposition, entailing the design of a very tedious dynamic programming procedure. Our algorithm is substantially simpler: we completely avoid the use of this new type of tree decomposition. Instead, we use a marking procedure to reduce the problem to (a weighted version of) itself on a standard tree decomposition of width ð'ª(â^Sk).
  • 关键词:Optimality Program; ETH; Unit Disk Graphs; Parameterized Complexity; Long Path; Long Cycle
国家哲学社会科学文献中心版权所有