首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Bounded VC-Dimension Implies the Schur-ErdÅ's Conjecture
  • 本地全文:下载
  • 作者:Jacob Fox ; J{'a}nos Pach ; Andrew Suk
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:46:1-46:8
  • DOI:10.4230/LIPIcs.SoCG.2020.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In 1916, Schur introduced the Ramsey number r(3;m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph K_n, there is a monochromatic copy of Kâ,f. He showed that r(3;m) ≤ O(m!), and a simple construction demonstrates that r(3;m) ≥ 2^Ω(m). An old conjecture of ErdÅ's states that r(3;m) = 2^Î~(m). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
  • 关键词:Ramsey theory; VC-dimension; Multicolor Ramsey numbers
国家哲学社会科学文献中心版权所有