首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Almost-Monochromatic Sets and the Chromatic Number of the Plane
  • 本地全文:下载
  • 作者:N{'o}ra Frankl ; Tam{'a}s Hubai ; D{"o}m{"o}t{"o}r P{'a}lv{"o}lgyi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:47:1-47:15
  • DOI:10.4230/LIPIcs.SoCG.2020.47
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In a colouring of â"^d a pair (S,sâ,€) with S âS† â"^d and with sâ,€ â^^ S is almost-monochromatic if S⧵{sâ,€} is monochromatic but S is not. We consider questions about finding almost-monochromatic similar copies of pairs (S,sâ,€) in colourings of â"^d, â"¤^d, and of â"S under some restrictions on the colouring. Among other results, we characterise those (S,sâ,€) with S âS† â"¤ for which every finite colouring of â" without an infinite monochromatic arithmetic progression contains an almost-monochromatic similar copy of (S,sâ,€). We also show that if S âS† â"¤^d and sâ,€ is outside of the convex hull of S⧵{sâ,€}, then every finite colouring of â"^d without a monochromatic similar copy of â"¤^d contains an almost-monochromatic similar copy of (S,sâ,€). Further, we propose an approach based on finding almost-monochromatic sets that might lead to a human-verifiable proof of χ(â"Â²) ≥ 5.
  • 关键词:discrete geometry; Hadwiger-Nelson problem; Euclidean Ramsey theory
国家哲学社会科学文献中心版权所有