首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Efficient Approximation of the Matching Distance for 2-Parameter Persistence
  • 本地全文:下载
  • 作者:Michael Kerber ; Arnur Nigmetov
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:53:1-53:16
  • DOI:10.4230/LIPIcs.SoCG.2020.53
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In topological data analysis, the matching distance is a computationally tractable metric on multi-filtered simplicial complexes. We design efficient algorithms for approximating the matching distance of two bi-filtered complexes to any desired precision ε>0. Our approach is based on a quad-tree refinement strategy introduced by Biasotti et al., but we recast their approach entirely in geometric terms. This point of view leads to several novel observations resulting in a practically faster algorithm. We demonstrate this speed-up by experimental comparison and provide our code in a public repository which provides the first efficient publicly available implementation of the matching distance.
  • 关键词:multi-parameter persistence; matching distance; approximation algorithm
国家哲学社会科学文献中心版权所有